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Constraining fast degrees of freedom and using a Langevin-like description of the dynamics are stan-
dard tools to simulate complex systems that allow for comparatively large time steps in the numerical in-
tegration of the equations of motion. Here we start with the Hamiltonian description of classical
mechanics for the incorporation of stochastic and frictional forces. Constraints are incorporated into
Hamiltonian dynamics following a procedure put forward by Dirac. Combining these two approaches,
in general, requires a different treatment of the constraints from that which is usually done in deter-
ministic dynamics. The numerical algorithm we chose for the integration of these equations is a second-
order Runge-Kutta scheme modified by a Euler treatment for the constraints. The resulting algorithm is
stable up to large time steps and generates averages in the canonical ensemble. The applicability of the
method to the simulation of large molecular systems is shown for a melt of n-C;; alkane chains by a com-
parison to results from a Nosé-Hoover molecular dynamics simulation.

PACS number(s): 02.70.Ns, 36.20.—r, 61.25.Hq

I. INTRODUCTION

Computer simulation of dense systems of complex mol-
ecules (e.g., polymers) is an example of a computational
task easily probing the limits of existing computational
capabilities. Treating the degrees of freedom from the
scale of the bond length to the size of the entire molecule
and obtaining the configurational equilibration of the
melt usually requires dealing with more than six decades
in relaxation times. A constant energy molecular dynam-
ics (MD) simulation that uses a time step of 107 3—1072
times the smallest relaxation time would have to run nu-
merically stable for at least 10® integration steps. While
this may be computationally feasible using a stable in-
tegration scheme such as the Verlet algorithm, the result-
ing algorithm would be prohibitively slow. Besides
changing the model completely (using lattice models
and/or Monte Carlo techniques, for example) there are
two approaches to overcoming this problem: constrain-
ing the fastest degrees of freedom and changing the simu-
lated ensemble to a canonic one. The latter can be
achieved by using the extended system of the Nosé-
Hoover [1,2] approach or by going from a MD simula-
tion to a stochastic dynamics (SD) simulation that aug-
ments the deterministic equations of motion with sto-
chastic and frictional forces [3,4].

The main purpose in both schemes is to change the
simulated thermodynamic ensemble, but since they intro-
duce an effective restoring force that keeps the tempera-
ture to a mean value, they also lead to an increased stabil-
ity of the numerical integration algorithms as compared
to a constant energy MD method [5,6]. Constraining the
fastest degrees of freedom in our example means fixing

*Permanent address: Institut fir Physik, Johannes Gutenberg
Universitat, D-55099 Mainz, Germany.

1063-651X/95/52(2)/2076(8)/$06.00 52

the bond lengths. The method for incorporating such
constraints into standard and extended system MD simu-
lations on the basis of the Lagrangian approach to
Newtonian dynamics as well as the algorithms for their
numerical implementation have been extensively re-
viewed [7,8].

The use of stochastic dynamics for the simulation of al-
kane chain systems has been discussed in Ref. [4] in a
configuration space approach. The derivation of that al-
gorithm did not explicitly consider constraints that were
treated as in the standard Lagrangian case. We will show
later on that this need not necessarily be so. In this pa-
per, we present a phase space description of the dynamics
that correctly incorporates the constraints along with
standard treatments of stochastic differential equations.
Section II will present an exposition of Hamiltonian dy-
namics with constraints following Dirac’s ideas [9] since
this topic is rarely treated and we will need the results for
further reference. In Sec. III, we will show the extension
of this Hamiltonian dynamics into a stochastic dynamics.
The numerical algorithm for the integration of the thus
derived equations of motion will be discussed in Sec. IV
with respect to general results on numerical integrators
for stochastic differential equations [10—12]. The results
of the application of this algorithm to the simulation of
melts of short alkane chains and a comparison to existing
data in the literature [13] will be discussed in Sec. V, Sec.
VI will present some conclusions, and an Appendix will
give a few important technical details on the simulation.

II. HAMILTONIAN DYNAMICS WITH CONSTRAINTS

Curiously enough this problem seems to have been
studied for the first time as late as 1950 by Dirac [9] and
Anderson and Bergmann [14] as a starting point for in-
corporating constraints into quantum mechanics and
quantum field theory. Recently, this problem has been
discussed again by de Leeuw, Perram, and Petersen [15]
with special emphasis on its relevance to the phase space
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integrals occurring in statistical mechanics. There are
basically two (equivalent) ways of going from a given La-
grangian and a set of holonomic constraints to a Hamil-
tonian description with constraints. They are discussed
in detail and in a more mathematical terminology in [16]
under the headings ‘“vaconomic mechanics” (mechanics
of the variational axiomatic kind) and “Hamiltonian dy-
namics with constraints.” The basic idea is [16] that one
either considers a constrained Lagrangian and uses this
to define the conjugate momenta and the transition to the
constrained Hamiltonian as was done in [15], or starts
from the Hamiltonian description on the unconstrained
manifold, adds the constraints to define a modified Ham-
iltonian, and generates the constrained Hamiltonian dy-
namics by the Poisson bracket with the modified Hamil-
tonian. This approach was taken by Dirac [9] and is
more convenient for our purpose of introducing frictional
forces for the stochastic dynamics since the conjugate
momenta in this approach depend only on the velocities
and not on the constraints. Let us, therefore, consider a
dynamical system with Hamiltonian given by

H@), (FD=3 5, B+ VUGD | i

i

We furthermore consider the holonomic constraints

<Dk({¢7})=0, k=1,,M, (2)
and their differential form (or first time derivative)
oP, p;
v, ({q},{P})= . =0, (3)
{q},{p} 2 P—

where we expressed the Cartesian velocities through their
conjugate momenta. For treating mechanics with con-
straints, Eqs. (2) and (3) are equivalent. For the deriva-
tion of Hamiltonian dynamics with constraints, one uses
(2) as the so-called primary constraints [16]. We will in-
corporate both (2) and (3) into our constrained Hamil-
tonian, which will show up as redundant information in
the Hamiltonian case, but is helpful for the extension to a
stochastic dynamics algorithm. So let us define the con-
strained Hamiltonian by

H(G), (F)=#((d}, (P} >+k§ A P((7))
=1
+éluk‘l'k<{é’},{ﬁ}> . 4)

The equations of motion resulting from this Hamiltonian
are

G =G, H')= Pi 4 M oY, 5)
g:= {4 m, kE o

= . M oD, M v,

P ={p;,H'}=F, 2 - Su——, (6

k=1 ag; k=1 aq;

where { } denotes the Poisson bracket. As additional re-
quirements we have the time invariance of the constraint
equations for motions on the constraint manifold,

2077
) ! Di M oP; Y,
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M oY, ad,
—IMIE
k=1 ¢ 9p; 9g;
k=1 ¢ |9¢; Jp; 9p; Og;
(8)
Making use of the fact that
I 0P, p;
Vi ({g}, (P=2 og, m; ©)
Eq. (7) reads
S s L 0% 9% (10)
k=1 i ™ 9dq; 0q;
The symmetric matrix
Alk:EL‘a%‘aq_),k (11
; M 9q; 9q;
is, in general, nonsingular, so that Eq. (10) leads to
uy=0, k=1,...,M . (12)

Trying to use both constraint equations (2) and (3), we
find that in the case of pure Hamiltonian dynamics, one
of them is redundant. Using Eq. (2) as the primary con-
straints, Eq. (7) leads to the differential form of the con-
straint equation (3) as a secondary constraint [p; =0 in
(7)] and the time invariance of the secondary constraints
gives a set of equations [(8) with all u,=0] for the
Lagrange parameters A;. The equations of motion and
the determining equations for the Lagrange parameters
are the same or equivalent to those in the Lagrangian
treatment of constraint dynamics.

Before discussing the extension of this Hamiltonian dy-
namics to a stochastic dynamics, let us become more
specific now and write down the equations of motion for
a united atom model of a melt of linear alkane chains
CH;-(CH,)y _,-CH;. We will keep the C-C bond length
fixed and treat the CH, and CH; groups as united atoms
of mass 14 a.u. and 15 a.u., respectively. The exact force
fields will be specified in Sec. V. The constraint equations

take the form
Pi({g})= —g*r—1’=o0,

k=1,...,N—

(GK +1
L,a=1,...,P (13)
Biei B
mp 41 my

k=1,...,N—1; a=1,...,P, (14)

‘1’%({?},{17})=(61?+1—?1}?)° =0,

where N is the number of united atoms per chain, / is the
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C-C bond length, and P is the number of chains in the
simulation volume. The equations of motion have the
following form:

a Ha ‘LL a
= t—l —a_ —a ! —a —a
: : a7, 15
i mi ; —4; 1) m; o, (q1+1 q; ) ( )
o o Py Py Piv1 Pf
P =F —pi|—— N R
m; m;_, m;y;  m;
—OAE (G =G )+ 2AKGR  — ) - (16)

We will not write down the explicit version of the con-
sistency equations (7) and (8) following from the time in-
variance of the constraints, since we will not use them for
the algorithm.

III. STOCHASTIC PHASE SPACE DYNAMICS
WITH CONSTRAINTS

To extend the Hamiltonian dynamics with constraints
into a stochastic dynamics in phase space we augment
Egs. (15) and (16) [in the general formulation Egs. (5) and
(6)] by stochastic and frictional forces. Since frictional
forces are proportional to the momenta, using the veloci-
ties U;=p;/m; as the second phase space variable, one
gets

(1

dgi=vfdi+ | ——L(Gr—g,)

i

a
I ol By
— (G4
m;

mi‘ﬁia=[ﬁ —ym;v; ]dt + [pi(07, —07)

—g7) |dt , 17

—pio (07— ) ]de
+[2A%(q 1 — ) —2A7 (g7 —g/— ) ]dt
+0,dWH1) , (18)

m, [Tt )—v“(O)]—f[F"‘
+ [ RO () =]~
+f0 A g (1) —

Inserting these equations into the constraint equations (2)
and (3) gives the defining equations for the determination
of the Lagrange parameters in the case of the stochastic
dynamics. They are nonlinear stochastic integral equa-
tions and of not much practical use in this general form.
However, when combined with the chosen algorithm for
the integration of the stochastic equations of motion,
which amounts to a certain order up to which the in-
tegral equations above are solved, this definition yields a
procedure to determine the Lagrange parameters to the
same order as the integration algorithm.

lu‘z—l
gt )] —2A¢_ ()] q]

where y is the friction coefficient and the dW, () are the
increments of independent Wiener processes,

(dW,(1))=0,
(AW, (AW 5(t") ) =8,;8,55(t —1t')dt

(19)

The prefactor o; is fixed by the fluctuation dissipation

theorem
o?=2ym;kyT . (20)

Note that now we cannot conclude that either all Ay or
all u are equal to zero since the dynamics imposed by
Egs. (17) and (18) is no longer Hamiltonian. The con-
sistency equations (7) and (8) are no longer directly avail-
able to determine the Lagrange parameters Ay and uf.
This was overlooked in Ref. [4] where the corresponding
equations for the Lagrangian dynamics were still used to
derive the numerical algorithm for the integration of the
equations of motion, though not actually used to calcu-
late the values of the Lagrange parameters.

The general idea when calculating the forces of con-
straint is the same as in the deterministic case. The con-
straint equations have to be invariant under the dynamics
generated by the equations of motion. To implement this
idea for the stochastic dynamics, we have to remember
that the solutions to the equations of motion (17) and (18)
are defined as the solutions to the following stochastic in-
tegral equations:

ai“(t)—¢“(0)=fo‘aa(t')dt'

& ")
+ [ g =g )

ym.U;’(t’)]dt'+a,.ftdﬁﬁ“(t’)

m;
)
o (475, (2")
—qg2(¢')] de’ (21)
and
DY) —vf (¢")]}de
A"y —gf(¢')]}de’ . (22)

[

Alternatively, one can look at the total stochastic
differential of the constraint equations (2) and (3) making
use of the equations of motion (17) and (18). Here we
need only to consider the differences appearing in com-
parison to the Hamiltonian case. The important one is
the term

Oi+1

o,
(@41 —a7)- m,+1d z+1_;117dWia (23)

appearing in the differential of Eq. (3). If the stochastic
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velocity increments are chosen orthogonal to the con-
straints so that the above term is zero, one is back to the
case of the consistency equations in the Hamiltonian dy-
namics. The two constraints are redundant and only one
set of Lagrange parameters needs to be considered. In
the numerical implementation, this set would be used to
guarantee the fulfillment of Eq. (2), but one would have to
correct the velocities from time to time because of the
violation of (3) due to numerical inaccuracies (if one does
an integration in phase space). Furthermore, since we are
using Cartesian and_not generalized coordinates, the
Wiener increments dW;” would no longer be independent
along the chain and one would have to reexamine the
fluctuation dissipation relation.

However, if one envisages the stochastic forces as mod-
eling uncontrolled fast degrees of freedom, one would
not, in general, require the term (23) to vanish. In this
case, the two sets of Lagrange parameters are no longer
redundant. In the numerical implementation, they will
be used to fulfill both constraint equations separately.
Also, now the Wiener increments are independent vari-
ables and the choice of the o; according to the
fluctuation-dissipation relation (20) leads to the correct
mean kinetic energy of the center of mass of a chain.

In the next section, we will discuss how one integrates
the stochastic differential equations taking into account
the constraints in this way and we will present the algo-
rithm we chose.

IV. NUMERICAL INTEGRATION OF STOCHASTIC
PHASE SPACE DYNAMICS WITH CONSTRAINTS

As a reminder of the general results on the numerical
integration of stochastic differential equations and for

]
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later reference, let us briefly discuss the following general
equations:

dz;=f(z,t)dt +odW, , (24)

with z;, f;,dW;ER". The simplest integration scheme is
the Euler algorithm with time step A

z;(h)=2;(0)+ f,(z(0),00h +c AW, (h)+0O(h?), (25)

where AW;(h) is a Gaussian random variable with zero
mean and variance A. The Euler algorithm is first order
in A and every moment of the random variables z; at a
fixed time ¢ will be known up to an error O(h). The
highest-order algorithms for these stochastic differential
equations are of second order in a single integration step
[10,11] leading to errors O (h?) for the moments of the
stochastic variables at fixed time ¢. The simplest integra-
tion scheme having this order of accuracy is the Heun al-
gorithm [12,17], which is a second-order Runge-Kutta
scheme [18],

z;(h)=2,0)+Lh [ £(2(0),0)+ fi(&(h), k)]
+oAW,(h)+0 (h?) (26)

involving one Euler step for the determination of the

&i(h),
E;(h)=z;(0)+f(z(0),0)h +oAW;(h) . (27)
Turning to our equations of motion (17) and (18), let us

denote the Euler step for the positions by Ef-’(h) and the
one for the velocities by @7(4). They are

— Pre 'u'?_l(o) —a —a ;1(0) —a —a
EXR)=GHO)+THO)h + { ———[§H0)—g{_,(0)]— [G741,(0)—g0)] (A, (28)
i i+1
m,B%h)=m;TX0)+ [FX0)—ym,;5X0)]h + 0, AW h)+ {uZ(0)[v%,(0)—TH0) ] —uf_ (0)[TH0)—v (0)]} A
+{2A%0)[G%.1(0)—gH0)]—2A%_,(0)[gH0)— g™ 1 (0)]}A . 29)

Inserting these predictions into the constraint equations, one would get the determining equations for the Lagrange pa-
rameters corresponding to the Euler scheme. These will be solved using the SHAKE computer algorithm [7,8] for the
determination of the constraint positions and velocities. But the limited accuracy of the Euler scheme in a practical im-

plementation also enforces rather small time steps to insure fulfillment of the constraints.
Let us, therefore, now look at the Heun prediction for the positions,

—a —a =a —a 1 ,LL:-Z_.I(O) —a —a ,uf‘(O) —a —a
GE (N =g0)+ Lh [TFO)+a7n) 1+ 2 h | F 1500 —g (0] (G5 ,(0)—G&(0)]
i i+1
AN a(h) _ _
+ L B (G =& ()= S (= Erm] | (30)

i i+1

Without actually inserting the Euler predictions at this
point, we state the following findings. Inserting the Euler
prediction for the positions into the terms involving the
constraints creates couplings to neighboring constraints
along the chains that are quadratic in the time step and
the Lagrange parameters. Furthermore, we have to

f

determine uf(h) for the forces of constraint correspond-
ing to the Euler predictions at time 4. Due to the non-
linearity of the constraint equations, this would involve
solving coupled quadratic equations for the u(h).

In order to keep the integration scheme simple, we
neglect at this point quadratic terms in the time step
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when they involve the forces of constraint and substitute
©i0) for uf(h) and A(0) for A¥( k). This way we gen-
erate an algorithm that is of the order of the Heun
scheme for all terms but the constraints and of the order
of the Euler scheme for the constraints. That means the
combined algorithm can only be shown to be correct to
first order, although more exact and, from practical ex-
perience, more stable than the Euler scheme. Note, how-
ever, that the actual treatment of the constraints will be
done with the SHAKE algorithm, which means that the
positions and velocities after the integration step will
differ from the correct ones by terms of the order this in-
J
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tegration scheme has in all terms but the constraints.
The reason for this is that the forces of constraint deter-
mined according to the integration scheme differ from
the exact ones by terms of the order of the integration
scheme, whereas the accuracy of the SHAKE determina-
tion is not connected to the order of the algorithm but to
the desired numerical accuracy one chooses for the
fulfillment of the constraints. As we will see in the appli-
cation in the next section, this leads to a second-order al-
gorithm in the end. The following are the equations for
this numerical integrator:

G (n)=gf0)+TH0)h(1—1 yh)+%h2ﬁ;’(0)+%aihAW,-“(h)

@ (0) :
”—‘—[a,-“w)—q,_,(m]-“ (4%, (0—gFO] |, 31)
m; m;
m G h)=mBX0)+ Lh (1—yh)FH0)+ LhEA({G(h)})) —yh(1— Ly h)m5X0) + o, (1— Ly AW E(h)
+h {EHO)[BE,  (0)—TH0) | —pf_ (O)[FHO)— 5, (0)])
+h{20%0)[§% 1 (0)—GH0)]—2A%_ (0)[GH0)—GZ_,(0)]} . (32)

Here we have 1ncorporated the fact that we can replace

RE#({E(h)}) by hRFX({g(h)}) without changing the order
of the treatment of the deterministic forces. These equa-
tions, together with the SHAKE scheme to determine the
effect of the forces of constraint, define the numerical in-
tegration scheme.

Before we turn to the application, let us note that the
SHAKE scheme fulfills the constraints by working through
their effect on the positions and velocities of the atoms
iteratively. Once the constraints are fulfilled to the
desired accuracy, the differences

—G. (h),
’“J* (h),

S =Eh) (33)
8vF=v(h)—

the ?j,- (h) and 5} (h) being the predicted positions and ve-
locities without taking into account the constraints, can
be used to determine the Lagrange parameters uf and Af.
However, they will only be known to the accuracy with
which we treated the constraints in the numerical in-
tegration scheme, which is O(h). A quantity like the
pressure, which explicitly depends on the forces of con-
straint, will therefore contain a contribution that is only
known to order O (h).

V. SIMULATION OF A UNITED ATOM MODEL
FOR n-TRIDECANE (C,;H,;) MELTS

In this section, we want to apply the algorithm defined
in the preceding section to simulate a melt of 60 n-
tridecane (C;3H,g) chains modeled as chains of united
atoms of mass 14 a.u. and 15 a.u., respectlvely A period-
ic cubic box of linear dimension 30.6 A is used at 450 K
and one of linear dimension 29.14 A is used for 312 K to
reproduce the experimental density at these two tempera-

[

tures [19]. We will compare our findings on the static
properties of these melts to results obtained by simula-
tions of the same system using the Nosé-Hoover MD
[1,13] method. The parameters used in the following are
the same as those in [13]. The united atom force centers
are located at the positions of the C atoms and the C-C
bond length is kept fixed at 1.53 A. The C-C-C bending
motion is subject to the potential

Uy (3)=kg[cos(d)—cos(F,)]?, (34)

where k=120 kcal/mole and ¢;,=1.95477 rad and the
torsional potential is given as

U,(¢)="1{k,[1—cos(¢)]+k,[1—cos(2¢)]
+ks[1—cos(34)]} , (35)

where k;=1.6 kcal/mole, k,=—0.867 kcal/mole, and
k3=3.24 kcal/mole. The nonbonded interaction is of the
Lennard-Jones type
12
ro J _2 lr_o

r

u(r)= 0, r>2r,, (36)

6

, r=2r

where r,=4.5 A and €,=0.118 kcal/mole. Most of the
simulations have been performed at a temperature of 450
K where the conformational relaxation time of the chains
is about 25 ps [13]. The value of the friction coefficient ¥
is set to the inverse of a Lennard-Jones-like time con-
stant 'ro=(mcﬂ212/60)1/2=915.66 fs. Runs of a total
duration of 200-ps sampling about every 10 fs have been
done at 450 K and nine different time steps
(h=1,1.5,2,2.5,3,4,6,8,10 fs) have been used to assess
the order of convergence of the algorithm. For the com-
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TABLE I. Comparison of the results of the SPSD (stochastic phase space dynamics) algorithm with
the Nosé-Hoover MD results, using the same time step of 1 fs, for n-tridecane melts at the experimental

densities.
SPSD Nosé-Hoover MD SPSD Nosé-Hoover MD
T (K) 449.8 450 310.9 312
p (atm) —250 —248 —230 —230
Cy=(R?)/(N—1)I? 4.59 4.61 5.02 4.97
% trans 62 62 67 67
D (107 cm?/s) 31 46.4 6.3 7.0

parison with the Nosé-Hoover MD at 312 K, one run of
500 ps with a time sep of 1 fs has been performed sam-
pling every 20 fs.

In Table I, we compare the pressure and conformation-
al properties as obtained from the runs using the 1-fs time
step to the Nosé-Hoover MD results obtained with the
same time step. All the results are virtually identical,
meaning that the P-V-T behavior and the conformational
properties for this model are reproduced correctly by the
new algorithm. The same holds true for the structural
properties of the melt; for example, the pair distribution
functions are found to be indistinguishable between the
two simulation methods. Of course, a stochastic dynam-
ics algorithm deviates in the dynamic behavior from that
of a MD method due to the effect of the friction
coefficient. This is evident when we look at the self-
diffusion coefficient of the chains, which is also shown in
Table I. The experimental value at 450 K is 50.9X10™¢
cm?/s and at 312 K it is 9.7X107°% cm?/s [20]. The
values for the Nosé-Hoover MD method are quite close
to the experiments for both temperatures whereas the
values for the stochastic dynamics show larger devia-
tions, especially at the higher temperature.

Now that this algorithm has been shown to generate
the correct static properties at a small time step, we will
examine the convergence behavior. Figure 1 shows the
mean temperature as determined in the simulation as a

460.0 —

450.0 O Simulation
° —— Fit

440.0

430.0 |

<T>[K]

420.0 |

410.0

400.0 - -
0.0 8.0 10.0 12.0

20 20 6.0
h [fs]
FIG. 1. The mean temperature as measured in the simulation
as a function if the time step used (open circles). The full line is
a one parameter fit to a quadratic time step dependence using
the imposed temperature of 450 K as the zero time step limit.

function of the time step.- Also shown is a fit with a quad-
ratic time step dependence of the error with the prefactor
of the quadratic behavior as the only fit parameter.
The simulation results are nicely described by
T =450—0.4779h2, showing that the actual implementa-
tion of the algorithm using the SHAKE scheme to fulfill
the constraints is of second order in a single time step and
thus one order higher than what would be expected if the
constraints were fulfilled according to the accuracy to
which they are treated in the derivation of the algorithm.
In support of this finding, Fig. 2 shows the mean bending
energy and the mean torsional energy as linear functions
of the square of the time step. The time step dependence
of other quantities, like the mean squared radius of gyra-
tion and the mean squared end-to-end distance, are hard
to assess due to the uncertainties in obtaining these
values by these runs for 60 chains.

The error in the temperature for the largest time step
of 10 fs in Fig. 1 is approximately 50 K. However, this is
not due to a permanent drift in temperature, since, as
shown in Fig. 3, the algorithm is still stable at this time
step. That is, starting from an initial configuration corre-
sponding to an internal temperature of 450 K the system
temperature drops within the first few picoseconds to the
average value typical for the chosen time step and then
remains stable. The practical stability limit of this algo-
rithm was found to be about 14 fs. At a time step of 15
fs, the integration becomes unstable within a few pi-

450.0

400.0 |

<E,>[kcal/mole]

350.0 |

300.0

<Eg>[kcal/mole]

250.0 " " 1 " L
0.0 20.0 40.0 62(10 80.0 100.0

n® [fs°]

FIG. 2. Quadratic time step dependence of the mean bending
energy E, (full circles) and the mean torsional energy E, (full di-
amonds). The straight lines are linear regressions to the data.
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470.0

450.0

— 4300 | L

410.0 | “
\ W, Y 3 o~
\ \. FAY i o ™
L\;\/ ", -~ S\ AN -~ N\I\,\I \
s JN s i ! \
Y “ A \
v
390.0 v + L
50 100 150 200
t[ps]

FIG. 3. Variation of the average temperature during the
simulation as a function of time step, using an imposed tempera-
ture of 450 K. Full line, # =1 fs; dashed line, # =4 fs; and dot-
dashed line, # =10 fs. The curves are running averages over 10
ps to reduce the fluctuations and emphasize the overall trend
with the time step.

coseconds and the temperature diverges. One has to note
that this is roughly one half of the time scale associated
with the bond angle bending motions as the stiffest de-
grees of freedom, showing a rather high stability of this
integration algorithm.

Now that we have shown that the algorithm is stable to
very large time steps and also know by which amount the
internal temperature is reduced when using the large time
steps, we can of course try to correct that from the outset
to equilibrate our system at the desired temperature by
using the large time steps for the highest computational
efficiency. Figure 4 shows the torsional angle distribution
as determined for three runs where the target tempera-
ture has been adjusted to account for the expected tem-
perature drop. The run with 1-fs time step was done with
450 K as the target temperature, the one with 4 fs used

0.015 A —— h=1fs
"""" h=4fs
————— h=10fs
. 0.010
8
o
0.005
0.000 . + + - .
-180.0 -120.0 -60.0 0.0 60.0 120.0 180.0
[

FIG. 4. Torsional angle distribution P(¢) for different time
steps with target temperatures adjusted to yield mean tempera-
tures of about 450 K in the simulation. Full line, A =1 fs;
(T)=449.8 K; dashed line, # =4 fs; (T')=450.4 K; and dot-
dashed line, A =10 fs; ( T) =443.1 K.

460 K, and the one with 10 fs used 496 K. The three dis-
tributions are virtually identical even in the sensitive re-
gion of the barriers between the trans state and the
gauche states. There is a slight reduction in the height of
the trans maximum but when one looks at the average
trans fraction, defined as the probability for ¢ to lie in be-
tween —60° and 60°, this is practically independent of the
time step (0.618 for A =1 fs, 0.617 for h =4 fs, and 0.614
for h =10 fs). Therefore, the drop in the height is com-
pensated by a slight increase of the width of the trans
peak meaning that the larger time steps allow for larger
fluctuations around the mean trans position. The same is,
of course, true for the gauche peaks but is not resolvable
in the figure due to their smaller total weight. Overall,
however, the conformational properties as well as the
pressure and the pair distribution function come out the
same for the three simulations. Static properties are only
determined by the density and average temperature of the
run, so that one can generate equilibrated structures at a
certain temperature by using higher target temperatures
for the large time steps.

VI. CONCLUSIONS

We have shown in this paper that the extension to a
stochastic dynamics is best done from a phase space or
Hamiltonian description of the dynamics. The way to in-
corporate constraints into Hamiltonian dynamics has
been reviewed and it has been shown that the extension
into a stochastic dynamics, in general, requires a new
treatment of the constraints differing from that which is
derivable in either Lagrangian or Hamiltonian mechan-
ics. The forces of constraint become stochastic variables
and the integrated and differential forms of holonomic
constraints, in general, are no longer redundant. In the
derivation of the numerical algorithm to integrate the re-
sulting equations of motion, the forces of constraint were
only treated exactly to first order in the time step 4, due
to the numerically prohibitive complexity of the terms of
order %2 and h2 Using the SHAKE algorithm for the
exact fulfillment of the constraints along the generated
trajectory, however, in practice also leads to a treatment
of the constraints exact to order 42 and, therefore, to an
overall third-order algorithm for all quantities that do
not explicitly depend on the forces of constraint. This
was shown in the application to the simulation of n-
tridecane melts. The advantage of this approach is that it
leads to an algorithm that is stable up to very large time
steps and that generates the correct averages of the
canonical ensemble. The limiting stable time step is five
times as large as the one for a Nosé-Hoover MD treat-
ment of the same system as an alternative way to gen-
erate a NVT ensemble. The disadvantage is that the dy-
namics is changed by the introduction of the friction
effects and depends on the chosen value of the friction
coefficient. It is not changed qualitatively but the value
of, for instance, the diffusion coefficient comes out wrong.
Nevertheless, if one adjusts the temperature defining the
strength of the stochastic forces to correct for the error
in the simulation temperature induced by the large time
steps, one has a very efficient method to equilibrate dense
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systems of complex molecules with long intrinsic relaxa-
tion times.
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APPENDIX

This Appendix will give a few technical details that are
important to really use the algorithm derived in this pa-
per efficiently. The most important point to note is that
one does not need Gaussian random numbers for the nu-
merical integration of a stochastic differential equation.
This is of paramount importance in the simulation of a
dense system. If one uses Gaussian random numbers, one
not only invests a lot of CPU time unnecessarily (the usu-
ally employed Box-Muller algorithm to convert uniform-
ly distributed random numbers into Gaussian distributed
ones is far more CPU-time consuming than the random
number generation itself) but one also has stochastic dis-
placements in the positions and velocities that are not
bounded. To reduce the probability of the occurrence of
such a displacement in the length of the simulation,
which could bring atoms too close together and cause a
numeric overflow in the calculation of the nonbonded in-
teraction, one has to resort to small time steps and the
possible advantage of a stochastic dynamics simulation is
lost. It was shown in [12] for the moments of the sto-
chastic variables and in [21] and [22] for all properties of
the stochastic process under study that it suffices to
reproduce the first 2n moments of the Gaussian distribu-
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tion if 7 is the order of the integration algorithm. The re-
ported simulations used the following approximation for
the Wiener process [12]:

—(3m)'2 ifR<1/6
AW,gh)= {0 if 1/6<R <5/6
(3m)'% if 5/6<R ,

(A1)

where the random number R is uniformly distributed in
(0,1). This distribution correctly reproduces the first four
moments of the Gaussian distribution. The random num-
bers were generated using the R250 random number gen-
erator in an optimized version for the IBM RS6000
workstations [23].

The most time consuming part of these particle simula-
tions is always the determination of all the pair interac-
tions. To speed this up, a Verlet [24] neighbor list was
used in a modification described by Chialvo and De-
benedetti [25] which automatically adopts the frequency
of update of the neighbor lists to the mobility of the
atoms in the simulation. For the system under study, it
turned out that the neighbor list had to be updated ap-
proximately every 50 fs to correctly keep track of the in-
teracting pairs, meaning that the number of integration
steps between neighbor list updates automatically adjust-
ed to 52 for the 1-fs time step, to 12 for the 4-fs time step,
and to 5 for the 10-fs time step. The CPU time spent for
one time step for the 780 particle system on an IBM
RS6000/530H is 0.3 s. An integration based on the algo-
rithm proposed in [4] is about 1.7 times slower. The
Nosé-Hoover dynamics in phase space can be implement-
ed equally efficiently but is limited to a maximum time
step of about 3 fs.
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